Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
48th International Conference on Very Large Data Bases, VLDB 2022 ; 15(12):3606-3609, 2022.
Article in English | Scopus | ID: covidwho-2056499

ABSTRACT

Kernel density visualization (KDV) has been widely used in many geospatial analysis tasks, including traffic accident hotspot detection, crime hotspot detection, and disease outbreak detection. Although KDV can be supported by many scientific, geographical, and visualization software tools, none of these tools can support high-resolution KDV with large-scale datasets. Therefore, we develop the first versatile programming library, called LIBKDV, based on the set of our complexity-optimized algorithms. Given the high efficiency of these algorithms, LIBKDV not only accelerates the KDV computation but also enriches KDV-based geospatial analytics, including bandwidth-tuning analysis and spatiotemporal analysis, which cannot be natively and feasibly supported by existing software tools. In this demonstration, participants will be invited to use our programming library to explore interesting hotspot patterns on large-scale traffic accident, crime, and COVID-19 datasets. © 2022, VLDB Endowment. All rights reserved.

2.
37th IEEE International Conference on Data Engineering, ICDE 2021 ; 2021-April:936-947, 2021.
Article in English | Scopus | ID: covidwho-1369293

ABSTRACT

Knowledge graph is a way of structuring information in graph form, by representing entities as nodes and relationships between entities as edges. A knowledge graph often consists of large amount of facts in real-world which can be used in supporting many analytical tasks, e.g., exceptional facts discovery and fact check of claims. In this work, we study a core-based top-k frequent pattern discovery problem which is frequently used as a subroutine in analyzing knowledge graphs. The main challenge of the problem is search space of the candidate patterns is exponential to the combinations of the nodes and edges in the knowledge graph.To reduce the search space, we devise a novel computation framework FastPat with a suite of optimizations. First, we devise a meta-index, which can be used to avoid generating invalid candidate patterns. Second, we propose an upper bound of the frequency score (i.e., MNI) of the candidate pattern that prunes unqualified candidates earlier and prioritize the enumeration order of the patterns. Lastly, we design a join-based approach to compute the MNI of candidate pattern efficiently. We conduct extensive experimental studies in real-world datasets to verify the superiority of our proposed method over the baselines. We also demonstrate the utility of the discovered frequent patterns by a case study in COVID-19 knowledge graph. © 2021 IEEE.

SELECTION OF CITATIONS
SEARCH DETAIL